Stability of QR-based fast system solvers for a subclass of quasiseparable rank one matrices

نویسندگان

  • Froilán M. Dopico
  • Vadim Olshevsky
  • Pavel Zhlobich
چکیده

The development of fast algorithms to perform computations with quasiseparable matrices has received a lot of attention in the last decade. Many different algorithms have been presented by several research groups all over the world. Despite this intense activity, to the best of our knowledge, there is no rounding error analysis published for these fast algorithms. In this paper, we present error analyses for two fast solvers of quasiseparable linear systems when they are applied on order one quasiseparable matrices that include the diagonal in the lower triangular rank structure. Both solvers are based on computing first the QR factorization of the coefficient matrix, and their error analyses require novel structured techniques for proving rigorously that only one of the considered algorithms is backward stable, while the other one is not. Two fundamental consequences of this work are: (i) users should employ with caution fast algorithms for quasiseparable matrices since they may be unstable; and (ii) a lot of work has to be done to identify which fast algorithms for quasiseparable matrices are backward stable among the large family available in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On solving the definite tridiagonal symmetric generalized eigenvalue problem

In this manuscript we will present a new fast technique for solving the generalized eigenvalue problem T x = λSx, in which both matrices T and S are symmetric tridiagonal matrices and the matrix S is assumed to be positive definite.1 A method for computing the eigenvalues is translating it to a standard eigenvalue problem of the following form: L−1T L−T (LT x) = λ(LT x), where S = LLT is the Ch...

متن کامل

A Parallel Qr-factorization/solver of Quasiseparable Matrices

Abstract. This manuscript focuses on the development of a parallel QR-factorization of structured rank matrices, which can then be used for solving systems of equations. First, we will prove the existence of two types of Givens transformations, named rank decreasing and rank expanding Givens transformations. Combining these two types of Givens transformations leads to different patterns for ann...

متن کامل

The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order

The QR iteration method for tridiagonal matrices is in the heart of one classical method to solve the general eigenvalue problem. In this paper we consider the more general class of quasiseparable matrices that includes not only tridiagonal but also companion, comrade, unitary Hessenberg and semiseparble matrices. A fast QR iteration method exploiting the Hermitian quasiseparable structure (and...

متن کامل

A Traub–like algorithm for Hessenberg-quasiseparable-Vander- monde matrices of arbitrary order

Although Gaussian elimination uses O(n) operations to invert an arbitrary matrix, matrices with a special Vandermonde structure can be inverted in only O(n) operations by the fast Traub algorithm. The original version of Traub algorithm was numerically unstable although only a minor modification of it yields a high accuracy in practice. The Traub algorithm has been extended from Vandermonde mat...

متن کامل

Row Compression and Nested Product Decomposition of a Hierarchical Representation of a Quasiseparable Matrix

This research introduces a row compression and nested product decomposition of an n × n hierarchical representation of a rank structured matrix A, which extends the compression and nested product decomposition of a quasiseparable matrix. The hierarchical parameter extraction algorithm of a quasiseparable matrix is efficient, requiring only O(nlog(n)) operations, and is proven backward stable. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2013